
PCA-8288/8688

Programmer's Guide

Document history

date version changes

17.12.2015 12.2015 the init ial release (translated from Czech)

Caution

The TEDIA® products may be used only according to the manufacturer‘s recommendations and precautions given in this

document and other general standards and terms and may be used only such a way, that its failure caused by any reason

will not be dangerous to any person or property.

Disclaimer

This document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors

exist, TEDIA® reserves the right to make changes to subsequent editions of this document without prior notice to holders

of this edition.

TEDIA® provides this document “as is”, without warranty of any kind, either expressed or implied, including, but not

limited to, its particular purpose. TEDIA® reserves the right to make improvements and/or changes to this document, or to

the products and/or the programs described in this document, at any time.

Information provided in this document is intended to be accurate and reliable. The reader should contact TEDIA®, if

errors are suspected. In no event shall TEDIA® be held liable for any form of damage arising out of or related to this

document or the information contained in it.

All brand names and trademarks used in this document are the property of their respective owners.

Manufacturing, sales office, service center, technical support and headquarters:

address: TEDIA spol. s r. o., Zabelska 12, 31211 Plzen, Czech Republic

website: https://www.tedia.eu

phone/e-mail: https://www.tedia.eu/contacts

tech. support: https://www.tedia.eu/support

Copyright © 1994 - 2015 TEDIA® spol. s r. o.

Table of Contents

1. General information
1.1 Introduction

1.2 Standard height and low-profile card design

1.3 Firmware version

1.4 Where to get more information, technical support

2. PCI Express controller
2.1 Introduction

2.2 PCI configuration register space

2.3 Register's mapping

3. Functional registers
3.1 Registers overview

3.2 Splitting the address space into blocks

3.3 Block of registers with 8-bit data (+0000 ÷ 03FC)

3.4 Block of DIO ports and edge detection circuits registers (+0400 ÷ 07FC)

3.5 Block of analog outputs registers (+1400 ÷ 14FC)

3.6 Block of diagnostic registers (+3F00 ÷ 3FFC)

4. Registers intended for digital inputs/outputs ports
4.1 Introduction

4.2 Digital port functionality

4.3 Registers DINReg0, … , DINReg2 [RD]

4.4 Registers Register DINReg(2-0) [RD]

4.5 Registers DOUTReg0, … , DOUTReg2 [WR]

4.6 Register DOUTReg(2-0) [WR]

4.7 Register DIOCfgReg [WR/RD]

5. Registers intended for DIO signal edge detection circuits
5.1 Introduction

5.2 Registers DINREReg(x-x) and DINFEReg(x-x) [WR]

5.3 Registers DINREStatusReg(x-x) and DINFEStatusReg(x-x) [RD]

5.4 Registers DINREClrReg(x-x) and DINFEClrReg(x-x) [WR]

5.5 Registers DINREIRQReg(x-x) and DINFEIRQReg(x-x) [WR]

5.6 Simplified schematic diagram of edge detection circuits register structure

6. Registers intended for interrupt handling circuits
6.1 Introduction

6.2 Interrupt handling circuit functionality

6.3 Register INTEnReg [WR]

6.4 Register IRQCfgReg [WR]

6.5 Register IRQStatusReg [RD]

6.6 Register IRQClrReg [WR]

6.7 Register TimerReg [WR/RD]

6.8 Simplified schematics diagram of interrupt handling circuits register structure

7. Registers intended for analog outputs
7.2 Analog outputs functionality

7.3 Registers DACxReg [WR]

7.4 Registers DACxRegLo and DACxRegHi [WR]

7.5 Registers DACxPHYReg [RD]

8. Diagnostic registers (common to all card types)
8.1 Introduction

8.2 Register CardResetReg [WR]

8.3 Register CardResetStatusReg [RD]

8.4 Register CardSerNrReg [RD]

PCA-8288, PCA-8688 Programmer's Guide

8.5 Register CardIDReg [RD]

8.6 Register FPGATypeReg [RD]

8.7 Register FPGAVerReg [RD]

9. Registers in address spaces BAR1 a BAR2
9.1 Introduction

9.2 Address space BAR1

9.3 Address space BAR2

PCA-8288, PCA-8688 Programmer's Guide

1. General information

1.1 Introduction

This Programmer's Guide follows the PCA-8288/8688 card User's Guide (hereinafter all types referred as PCA-8x88)

containing …

• basic technical data,

• description of installation procedure

• and description of the connector pin assignment.

User's Guide is intended for a regular card user who only needs to install card and use it with already created programs.

Unlike the User's Guide, the Programmer's Guide contains …

• description of the PCI Express controller built into the card,

• description of all functional registers of the card

• and description of register-level programming.

Programmer's Guide therefore enables programming using a system driver with an API offering direct access to the

registers (in the case of Windows it is the tedia_ep4gxa.dll library), i.e. creating special programs or custom drivers (e.g.

for various SCADA systems or for the Linux operating system).

1.2 Standard height and low-profile card design

DAQ PCI Express TEDIA cards are available in a standard height version (type designation PCA-8x88) and low-profile

version (type designation PCA-8x88/LP). With the exception of the different locations of connectors and the applicable

accessories, both version are identical and the information contained in this manual is therefore valid for both variants.

1.3 Firmware version

Current firmware version at the time this document was issued:

FPGA - firmware type: 2E (represented by a value 2E
H
)

FPGA - firmware version: 0.2 (represented by a value 02H)

The FPGA firmware type is a control number assigned to the standard PCA-8x88 firmware. A different number represents

either an incorrect firmware configuration (for example, intended for a different card) or custom firmware.

The FPGA firmware version is an additional parameter that defines the card properties.

Note: The features described in this document reflect the specified firmware version.

Later firmware versions (unless otherwise noted) will be backward compatible with the current version and

will include improvements to existing functionality or brand new features.

1.4 Where to get more information, technical support

Further useful information is available at…

website: https://www.tedia.eu

In doubt, you can contact the manufacturer's technical support:

address: TEDIA spol. s r. o., Zabelska 12, 31211 Plzen, Czech Republic

phone/e-mail: https://www.tedia.eu/contacts

tech. support: https://www.tedia.eu/support

Note: Although this Programmer's Guide has been carefully reviewed, it can contain errors. If you suspect that some

information is listed incorrectly, incompletely or inaccurately, please contact technical support.

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 1

2. PCI Express controller

2.1 Introduction

All PCA-8x88 cards are equipped with a PCI Express bus controller core implemented in an FPGA gate array (i.e. the

cards do not use any special PCI Express controller/bridge to the local bus interconnecting I/O peripherals).

The implementation of controller is single-functional (the card thus behaves as one PCI device) with three address spaces

(BAR) mapped in the in 32-bit address MEM space.

Note: Although the card's registers are mapped to the MEM space with 32-bit addressing, the DMA controller (if

implemented) supports both 32-bit and 64-bit addressing modes.

2.2 PCI configuration register space

The table below provides an overview of the selected registers from the PCI configuration register space.

address register name PCA-8288
PCA-8288/LP

PCA-8688
PCA-8688/LP

01 H÷00 H Vendor ID 1760 H (i .e . TEDIA VID)
03 H÷02 H Device ID 0860 H 0861H
08 H Revision ID 01 H
0B H÷09 H Class Code 118000 H (i .e . PCI class "other data acquisit ion control ler")
13 H÷10 H BAR0 functional card's registers

(MEM, 16kB, assigned by BIOS)
17 H÷14 H BAR1 service purpose registers (f irmware update, cal ibration constants, etc.)

(MEM, 16kB, assigned by BIOS)
1B H÷18 H BAR2 registers intended for the kernel part of the operating system driver

(MEM, 4kB, assigned by BIOS)
1F H÷1C H BAR3 unused
23 H÷20 H BAR4 unused
27 H÷24 H BAR5 unused
2D H÷2C H Subsystem Vendor ID 1760 H (i .e . TEDIA VID)
2F H÷2E H Subsystem ID 0001 H
3C H Interrupt Line number of IRQ channel (assigned by BIOS)
3D H Interrupt Pin 01 H (INTA)

What is the information provided by the PCI configuration registers described above …

• Vendor ID and Device ID are intended for identification of the card type in the system

(in case of uncertainty, Subsystem Vendor ID and Subsystem ID may also be used, or Class Code)

• BARx are designed to determine the allocated resources, i.e. the starting address of the register blocks

• The Interrupt Line is designed to determine the current connection of the card's INT signal to the logic IRQ interrupt

channel (resp. to the MSI channel in case of this interrupt mode)

2.3 Register's mapping

The following paragraphs describe general information about register mapping.

Register's mapping only in MEM space and not in I/O space as with TEDIA DAQ PCI cards …

Mapping in I/O space is obsolete and very restrictive (it allows to allocate a total of 255 blocks of 256 bytes size to all PCI

devices in the computer) and finds meaningful use only in operating systems (resp. development tools) that do not allow

simple 32-bit or 64-bit addressing of MEM space (eg. MS-DOS).

Registers in BAR0 space …

This BAR space contains all user registers (i.e. registers accessing I/O peripherals of the card).

The following chapters are dedicated, with a few exceptions, exclusively on the description of these registers.

Registers in BAR1/BAR2 space …

These BAR spaces contain service purpose registers and registers intended for kernel part of the operating system driver.

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 2

3. Functional registers

3.1 Registers overview

The tables in the following paragraphs provide an overview of the functional registers implemented in the current

firmware version (see Chapter 1). All functional registers described in this chapter are mapped in BAR0 space.

Warning: All registers, unless explicitly stated otherwise (e.g. registers whose initial value can be defined via the EEPROM

contents), have zero values after power-up start or reset.

However, when program starts, it can not rely on this state because the registers can be set to different values by

the previous program; they can be set to defined state either by programming values or by using the

CardResetReg register.

Note: If you are creating a program that supports multiple types of card, it is also recommended to use a document

containing tables with comparison of register maps for different types of cards.

3.2 Splitting the address space into blocks

The table below provides an overview of splitting of the entire BAR0 address space into several blocks according to I/O

peripherals; this structure is used by all types of TEDIA DAQ PCI Express card.

offset within BAR0 description of registers block

+0000 ÷ 03FC registers with 8-bit data (intended for easier migration from DAQ PCI cards)
+0400 ÷ 07FC registers with 32-bit data (block of DIO ports and edge detection circuits)
+0800 ÷ 13FC registers with 32-bit data (PCA-8x88 does not use this block)
+1400 ÷ 14FC registers with 32-bit data (block of analog outputs)
+1500 ÷ 3EFC registers with 32-bit data (PCA-8x88 does not use this block)
+3F00 ÷ 3FFC diagnostic registers (common to al l types of cards)

3.3 Block of registers with 8-bit data (+0000 ÷ 03FC)

The table below provides a list of registers with 8-bit data.

The registers can be accessed with byte operand to the address specified in the table, or with dword operand, with valid

data being transmitted on the lowest eight bits (higher bits are ignored during writing and zeroed during reading).

The program can only access addresses aligned to the dword (i.e. in integer multiple of 4) and it is not recommended to

access addresses other than listed in the table.

offset within BAR0 description of register (write) description of register (read)

+0000 DOUTReg0 DINReg0
+0004 DOUTReg1 DINReg1
+0008 DOUTReg2 DINReg2
+000C (reserved for DOUTReg3) DINReg3
+0010 (reserved for DOUTReg4) DINReg4
+0014 (reserved for DOUTReg5) DINReg5
+0080 DIOCfgReg (read back the register value)
+0200 IRQCfgReg IRQStatusReg
+0204 IRQClrReg - - -
+0208 TimerReg TimerReg
+020C INTEnReg (read back the register value)
+03F4 CardIDReg
+03F8 - - - FPGATypeReg
+03FC - - - FPGAVerReg

Note: The register mapping of the first three DIO ports is identical for all TEDIA DAQ PCIe cards.

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 3

3.4 Block of DIO ports and edge detection circuits registers (+0400 ÷ 07FC)

The table below provides a list of registers dedicated for access to DIO ports and signal rising/falling edge detection

circuits with the possibility of triggering an interrupt.

The program can only access registers with dword operand at addresses aligned to the dword (i.e. in integer multiple of

4) and it is not recommended to access addresses other than listed in the table.

offset within BAR0 description of register (write) description of register (read)

+0400 DOUTReg(2-0) DINReg(2-0)
+0410 DINREReg(2-0) DINREStatusReg(2-0)
+0414 DINREClrReg(2-0) - - -
+0418 DINFEReg(2-0) DINFEStatusReg(2-0)
+041C DINFEClrReg(2-0) - - -
+0440 DINREIRQReg(2-0) (read back the register value)
+0444 DINFEIRQReg(2-0) (read back the register value)

3.5 Block of analog outputs registers (+1400 ÷ 14FC)

The table below provides a list of registers dedicated for access to registers of analog outputs.

The program can only access registers with dword operand at addresses aligned to the dword (i.e. in integer multiple of

4) and it is not recommended to access addresses other than listed in the table.

offset within BAR0 description of register (write) description of register (read)

+1400 DAC0Reg (read back the register value)
+1404 DAC1Reg (read back the register value)
+1408 DAC2Reg (read back the register value)
+140C DAC3Reg (read back the register value)
+1410 DAC4Reg (read back the register value)
+1414 DAC5Reg (read back the register value)
+1418 DAC6Reg (read back the register value)
+141C DAC7Reg (read back the register value)
+14A0 DAC0RegLo (read back the register value)
+14A4 DAC1RegLo (read back the register value)
+14A8 DAC2RegLo (read back the register value)
+14AC DAC3RegLo (read back the register value)
+14B0 DAC4RegLo (read back the register value)
+14B4 DAC5RegLo (read back the register value)
+14B8 DAC6RegLo (read back the register value)
+14BC DAC7RegLo (read back the register value)
+14C0 DAC0RegHi (read back the register value)
+14C4 DAC1RegHi (read back the register value)
+14C8 DAC2RegHi (read back the register value)
+14CC DAC3RegHi (read back the register value)
+14D0 DAC4RegHi (read back the register value)
+14D4 DAC5RegHi (read back the register value)
+14D8 DAC6RegHi (read back the register value)
+14DC DAC7RegHi (read back the register value)
+14E0 - - - DAC0PHYReg
+14E4 - - - DAC1PHYReg
+14E8 - - - DAC2PHYReg
+14EC - - - DAC3PHYReg
+14F0 - - - DAC4PHYReg
+14F4 - - - DAC5PHYReg
+14F8 - - - DAC6PHYReg
+14FC - - - DAC7PHYReg

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 4

3.6 Block of diagnostic registers (+3F00 ÷ 3FFC)

The table below provides a list of registers dedicated for access to diagnostic and identification functions.

The program can only access registers with dword operand at addresses aligned to the dword (i.e. in integer multiple of

4) and it is not recommended to access addresses other than listed in the table.

offset within BAR0 description of register (write) description of register (read)

+3FE0 CardResetReg CardResetStatusReg
+3FF0 - - - CardIDReg
+3FF4 - - - CardSerNrReg
+3FF8 - - - FPGATypeReg
+3FFC - - - FPGAVerReg

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 5

4. Registers intended for digital inputs/outputs ports

4.1 Introduction

The following sections describe the registers related to digital inputs and outputs (see the overview in Chapter 3).

The DIO registers can be divided into a group of data registers…

DINReg0, …2 three 8-bit digital port input registers (sets of signals DIO00÷07, DIO08÷15 and DIO16÷23)

DINReg(2-0) 32-bit digital port input register (combines DINReg0, DINReg1 and DINReg2)

DOUTReg0, …2 three 8-bit digital port output registers (sets of signals DIO00÷07, DIO08÷15 and DIO16÷23)

DOUTReg(2-0) 32-bit digital port output register (combines DOUTReg0, DOUTReg1 and DOUTReg2)

and configuration register…

DIOCfgReg register for configuration of direction DIO ports (i.e. selection of input or output port)

Note: Initial value (e.g. after power-up or soft-reset using the CardResetReg register) of all registers mentioned above

can be defined via the EEPROM contents. Because the initial values stored in the EEPROM can be modified by

the configuration program, the user can define the DIO ports status programmed immediately after turning on

the computer without delay until the program starts.

4.2 Digital port functionality

All three ports are designed as bidirectional, i.e. each port (= eight digital signals) can be individually set as input or

output. The current state of the port can be obtained by reading the DINx register; in the case of configuration as an input

port, the status of input signals is read, in the case of configuration as an output port, current data written to the output

register are read back.

Further details can be seen in the picture below (only 8-bit port DIO0 is drawn, the part with the yellow background is

included in the card three times, i.e. separately for DIO0, DIO1 and DIO2 port).

Location of ports on the card connectors

All three ports (i.e. DIO0, DIO1 and DIO2) are connected to the KX1 - KX3 connectors located on the back edge of the

card (they are accessible via adapter cable), the next three ports (i.e. DIO0, DIO1 and DIO2) are connected to the D-Sub

25 connector located on the card bracket.

Note: The register mapping of the three DIO ports described above is identical for all TEDIA DAQ PCIe cards.

DOUTReg0
DIO

connector

DINReg0

3-state

line driver

bidirectional

line driver

DIOCfgReg

1
0

1
0= driver deactivated

= driver activated
= direction IN
= direction OUT

DIO00 ÷ DIO07
eight I/O signals

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 6

4.3 Registers DINReg0, … , DINReg2 [RD]

These registers are used to read the status of the digital port, each bit of the register accesses one signal of the 8-bit digital

port (bits D0 of these registers access the signals DIO00/08/16; bits D7 access DIO07/15/23).

In the case the port is configured as an input port, the register provides a current status of input signals; in the case the

port is configured as an output port, current data written to the output register are read back.

4.4 Register DINReg(2-0) [RD]

This register is an an alternative to the 8-bit registers described in the previous paragraph and they are used to read the

status of three digital ports at once (functionality remains identical to 8-bit registers).

The DINReg(2-0) register combines DINReg0, DINReg1 and DINReg2 (bits D00÷D23 provide a current value of ports

DIO00÷DIO23, the highest eight bits are permanently zeroed).

4.5 Registers DOUTReg0, … , DOUTReg2 [WR]

These registers are used to control the status of the output digital port, each bit of the register defines one signal of the

8-bit digital port (bits D0 of the registers control the signals DIO00/08/16; bits D7 control DIO07/15/23).

In the case the port is configured as an input port, data can be written to the DOUTReg register, but its contents do not

affect the state of the signals. In the case the port is configured as an output port, the current contents of this register

defines the status of the output signals.

Writing to these registers is allowed even if the port is set as input, their contents will be transferred to the signals

immediately after the port is switched to output mode.

4.6 Register DOUTReg(2-0) [WR]

This register is an alternative to the 8-bit registers described in the previous paragraph and it is used to control the

contents of three digital ports at once (functionality remains identical to 8-bit registers).

The DOUTReg(2-0) register combines DOUTReg0, DOUTReg1 and DOUTReg2 (bits D00÷D23 define the status of the

output signal DIO00÷DIO23, the highest eight bits are ignored).

4.7 Register DIOCfgReg [WR/RD]

This register is used to configure bidirectional DIO ports as input or output.

D7 D6 D5 D4 D3 D2 D1 D0

RSRV DIR2 DIR1 DIR0

DIR0 direction control of the DIO0 port

0 the outputs of the DOUT register are deactivated (i.e. the port works as an input)

1 the outputs of the DOUT register are activated (i.e. the port works as an output)

DIR1 direction control of the DIO1 port

0 the outputs of the DOUT register are deactivated (i.e. the port works as an input)

1 the outputs of the DOUT register are activated (i.e. the port works as an output)

DIR2 direction control of the DIO2 port

0 the outputs of the DOUT register are deactivated (i.e. the port works as an input)

1 the outputs of the DOUT register are activated (i.e. the port works as an output)

RSRV reserved (to ensure forward compatibility it is recommended to write 0 and ignore readed value)

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 7

5. Registers intended for DIO signal edge detection circuits

5.1 Introduction

The following sections describe the registers related to signal edge detection circuits (see the overview in Chapter 3).

List of registers:

DINREReg(2-0) enable of rising edge detection on DIO00÷DIO23 port signals

DINREStatusReg(2-0) rising edge event flags on DIO00÷DIO23 port signals

DINREClrReg(2-0) clear rising edge event flags on DIO00÷DIO23 port signals

DINFEReg(2-0) enable of falling edge detection on DIO00÷DIO23 port signals

DINFEStatusReg(2-0) falling edge event flags on DIO00÷DIO23 port signals

DINFEClrReg(2-0) clear falling edge event flags on DIO00÷DIO23 port signals

DINREIRQReg(2-0) enable interrupts from edge detection circuits (rising edge detection on DIO00÷DIO23)

DINFEIRQReg(2-0) enable interrupts from edge detection circuits (falling edge detection on DIO00÷DIO23)

5.2 Registers DINREReg(x-x) and DINFEReg(x-x) [WR]

These registers are intended to enable rising edge detection (DINREReg), resp. falling edge detection (DINFEReg) on DIO

port signals.

These registers have significant 24 lowest bits (bit D0 with value 1 enable edge detection on signal DIO00; bit D23 with

value 1 enable edge detection on signal DIO23), the highest eight bits are ignored (value 0 recommended to ensure

forward compatibility).

5.3 Registers DINREStatusReg(x-x) and DINFEStatusReg(x-x) [RD]

These registers are intended to determine the status of the flags of the edge detection circuits enabled by the

DINREReg(x-x) and DINFEReg(x-x) registers.

These registers have significant 24 lowest bits (value 1 on bit D0 indicate active flags related to signal DIO00; value 1 on bit

D23 indicate active flags related to signals DIO23), the highest eight bits are permanently zeroed.

5.4 Registers DINREClrReg(x-x) and DINFEClrReg(x-x) [WR]

These registers are intended to clearing selected flags of the edge detection circuits.

These registers have significant 24 lowest bits (bit D0 with value 1 clear flags related to signal DIO00, bit D23 with value 1

clear flags related to signal DIO23), the highest eight bits are ignored (value 0 recommended to ensure forward

compatibility).

Writing a value of 1 to a defined bit generates a short pulse, so following write of 0 is not required. Clearing any

combination of flags in a single write cycle is allowed.

5.5 Registers DINREIRQReg(x-x) and DINFEIRQReg(x-x) [WR]

These registers are intended to enable system interrupt event generation related to edge detection circuit flags.

These registers have significant 24 lowest bits (bit D0 with value 1 enable interrupt event generation related to signal

DIO00; bit D23 with value 1 enable interrupt event generation related to signal DIO23), the highest eight bits are ignored

(value 0 recommended to ensure forward compatibility).

More detailed information can be found in the picture and description given in the following paragraph, resp. in a

separate chapter with a description of interrupt circuits.

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 8

5.6 Simplified schematic diagram of edge detection circuits register structure

The figure below shows a simplified schematic diagram of the edge detection circuits, the connection with interrupt

circuits is described in a separate chapter.

Each DIOxx signal is equipped with identical circuits that allow the independent detection of rising edge, falling edge or

both edges on this signal.

The part of the schematics diagram highlighted in yellow shows the circuits dedicated for processing the signal DIO00, the

blue marked part shows the identical circuits for the signals DIO01 to DIO23.

All 48 flags (available for reading via the DINREStatus and DINFEStatus registers) allow to trigger an interrupt. Flags are

processed by AND gates in the first step (DINREIRQReg and DINFEIRQReg with value 1 allow flags signal to pass through

AND gate) and in the second step by OR gate.

As can be seen from the schematics diagram of the interrupt circuits (see the description in a separate chapter), the

interrupt of the system is triggered by the first detected edge, i.e. by transitioning the OR gate output from 0 to 1. To further

trigger an interrupt, it is therefore necessary for the interrupt program handler to process all interrupt events and then

clear all the flags of the edge detection circuits.

DIO00

1

edge detection

D Q

R

DINREReg(0)

DINREClrReg(0)

DINREStatusReg(0)

D Q

R

DINFEReg(0)

DINFEClrReg(0)

DINFEStatusReg(0)

&

&

DINREIRQReg(0)

DINFEIRQReg(0)

47x detection circuits intended for DIO01--DIO23 inputs
48-inputs OR gate

circuit output

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 9

6. Registers intended for interrupt handling circuits

6.1 Introduction

The following sections describe the registers related to interrupt handling circuits (see the overview in Chapter 3).

List of registers:

INTEnReg interconnection of interrupt detection circuits (all registers described in this chapter) with card

interrupt generation circuits (both INTA or MSI mode)

IRQCfgReg enabling of general interrupt sources

IRQStatusReg statuses of general interrupt sources

IRQClrReg clearing of general interrupt flags

TimerReg timestamp generator for periodically triggering interrupts

6.2 Interrupt handling circuit functionality

Interrupt handling circuits have the capability to cause a system interrupt event by one of the sources, or by a selected

combination of interrupt sources. The card uses the following interrupt sources:

Timestamp generator

Allows to trigger an interrupt with a selected time period in the range of 1÷254 ms.

Digital inputs - simple mode compatible with DAQ PCI cards

Allows to trigger an interrupt with falling edge of selected DIO port signals.

Digital inputs - edge detection circuits used by DAQ PCI Express cards

Allows to trigger an interrupt by any combination of rising and falling edges on all DIO port signals.

Note: For proper function of the interrupt circuits (see the schematics diagram on the following pages) it is necessary

to consider, that interrupt of the system is triggered by the first event. To further trigger an interrupt, it is therefore

necessary for the interrupt program handler to process all interrupt events and then clear all the flags (optional

flags of the edge detection circuits).

6.3 Register INTEnReg [WR]

These registers are dedicated to interconnection of interrupt detection circuits (all registers described in this chapter)

with card interrupt generation circuits (both INTA or MSI mode).

D7 D6 D5 D4 D3 D2 D1 D0

INTEN RSRV

INTEN activation of INTA/MSI control circuits

0 capture register generating control signal INTA or generating MSI is permanently zeroed

1 the capture register function is activated, i.e. the card may triggered a system interrupt

RSRV reserved (to ensure forward compatibility it is recommended to write 0)

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 10

6.4 Register IRQCfgReg [WR]

These registers are dedicated to enable of general interrupt sources.

D7 D6 D5 D4 D3 D2 D1 D0

RSRV DIN-X RSRV TIM RSRV IRQ2 IRQ1 IRQ0

IRQ0 enables the trigger an interrupt derived from the falling edge of digital port DIO00

0 the capture register connected with digital input is disabled

1 the capture register functionality is enabled

IRQ1 enables the trigger an interrupt derived from the falling edge of digital port DIO08

0 the capture register connected with digital input is disabled

1 the capture register functionality is enabled

IRQ2 enables the trigger an interrupt derived from the falling edge of digital port DIO16

0 the capture register connected with digital input is disabled

1 the capture register functionality is enabled

TIM enables the trigger an interrupt derived from timestamp generator

0 the capture register connected with timestamp generator is disabled

1 the capture register functionality is enabled

DIN-X enables the trigger an interrupt derived from signal edge detection circuits

0 the capture register connected with signal edge detection circuits

1 the capture register functionality is enabled

RSRV reserved (to ensure forward compatibility it is recommended to write 0)

6.5 Register IRQStatusReg [RD]

This register is dedicated to determine the status of the capture registers enabled by the IRQCfgReg register.

D7 D6 D5 D4 D3 D2 D1 D0

RSRV DIN-X RSRV TIM RSRV IRQ2 IRQ1 IRQ0

IRQ0 the current status of the capture register connected with digital input DIO00

0 the register is not set, i.e. no falling edge has been detected since the last reset

1 the register is set, i.e. an interrupt request event has occurred since the last reset

IRQ1 the current status of the capture register connected with digital input DIO08

0 the register is not set, i.e. no falling edge has been detected since the last reset

1 the register is set, i.e. an interrupt request event has occurred since the last reset

IRQ2 the current status of the capture register connected with digital input DIO16

0 the register is not set, i.e. no falling edge has been detected since the last reset

1 the register is set, i.e. an interrupt request event has occurred since the last reset

TIM the current status of the capture register connected with timestamp generator

0 the register is not set, i.e. no tome stamp has been detected since the last reset

1 the register is set, i.e. an interrupt request event has occurred since the last reset

DIN-X the current status of the capture register connected with edge detection circuits

0 the register is not set, i.e. no edge detection circuit event has been detected since the last reset

1 the register is set, i.e. an interrupt request event has occurred since the last reset

RSRV reserved (to ensure forward compatibility it is recommended to ignore readed value)

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 11

6.6 Register IRQClrReg [WR]

This register is dedicated to clearing selected flags enabled by the IRQCfgReg register.

D7 D6 D5 D4 D3 D2 D1 D0

RSRV DIN-X RSRV TIM RSRV IRQ2 IRQ1 IRQ0

IRQ0 resets the capture register connected with digital input DIO00

0 idle write, the state of the capture register is not modified

1 the capture register is reset (subsequent writing 0 is not required)

IRQ1 resets the capture register connected with digital input DIO08

0 idle write, the state of the capture register is not modified

1 the capture register is reset (subsequent writing 0 is not required)

IRQ2 resets the capture register connected with digital input DIO16

0 idle write, the state of the capture register is not modified

1 the capture register is reset (subsequent writing 0 is not required)

TIM resets the capture register connected with timestamp generator

0 idle write, the state of the capture register is not modified

1 the capture register is reset (subsequent writing 0 is not required)

DIN-X resets the capture register connected with edge detection circuits

0 idle write, the state of the capture register is not modified

1 the capture register is reset (subsequent writing 0 is not required)

RSRV reserved (to ensure forward compatibility it is recommended to write 0)

6.7 Register TimerReg [WR/RD]

This register is dedicated to control a timestamp generator intended mainly to periodically trigger a system interrupt.

The initial value of the register is zero and the timestamp generator is stopped. By writing a non-zero value, the generator

is started, the period is defined by the written value in milliseconds (up to 254 ms). By writing a zero value, the generator

is stopped again.

The register is also important for reading (this register provides a current value of the timestamp counter incremented

from zero every millisecond to the entered value reduced by one).

For example, by writing a value of 100, the first interrupt is triggered 100 ms after writing to the register and then every 100

ms. The values 0, 1, … , 98, 99, 0, 1, …, are provided by reading this register, the system interrupt is triggered at the

moment of transition from 99 to 0.

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 12

6.8 Simplified schematics diagram of interrupt handling circuits register structure

The figure below shows a simplified schematic diagram of the interrupt handling circuits and interconnection with

control/status registers; the edge detection circuits (highlighted in red) are described in a separate chapter.

Note: All three ISR_*** registers are mapped in BAR2 space and their description is out of focus of this manual.

From a general point of view - the circuits highlighted with yellow background must be controlled within the ISR (i.e. in

the OS kernel), the others can be controlled within the user program, within application driver (e.g. in the case of

Windows, the DLL with an API containing abstract high-level functions) or also within the ISR.

The ISR_INTEnReg(0), ISR_INTClrReg(0) and ISR_INTStatusReg(0) signals are implemented identically on all TEDIA DAQ

PCIe cards and allow to unify the ISR. The ISR_INTEnReg(0) signal is set to 1 after a power-up start or reset, therefore

control via INTEnReg(7) can be also used to create a user specific kernel driver without the need for knowledge of

mapping ISR registers in BAR2 space.

Internal solution of the standard tedia_ep4gxa driver for Windows fully complies with the information described above;

the ISR_INTEnReg(0) and ISR_INTClrReg(0) signals are controlled from the kernel part of this driver, as the only status

information is used ISR_INTStatusReg(0). The ISR is therefore completely independent of the type of card.

Note: Detailed information on interrupt handling register control is provided in the document "DAQ PCI/PCIe card's

Windows system driver Programmer's Guide".

1

D Q

R

IRQCfgReg(4)

IRQClrReg(4)

IRQStatReg(4)

TIMER (1÷255 ms)

1

ISR_INTEnReg(0)

D Q

R

IRQCfgReg(0)

IRQClrReg(0)

IRQStatReg(0)

D Q

R

IRQCfgReg(1)

IRQClrReg(1)

IRQStatReg(1)

DIO00

DIO08

D Q

R

log. level 1

ISR_INTStatusReg(0)

ISR registers

ISR_INTClrReg(0)

INTEnReg(7)

D Q

R

IRQCfgReg(2)

IRQClrReg(2)

IRQStatReg(2)

DIO16

D Q

R

IRQCfgReg(6)

IRQClrReg(6)

IRQStatReg(6)

block of edge

PCI Express
controller

INTA / MSI

detection circuits

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 13

7. Registers intended for analog outputs

7.1 Introduction

The following sections describe the registers related to analog outputs circuits (see the overview in Chapter 3).

List of registers:

DACxReg eight registers defining the value of the "xth" analog output (8000H as default)

DACxRegLo eight registers defining the lowest valid value written to DACxReg (0H as default)

DACxRegHi eight registers defining the highest valid value written to DACxReg (FFFFH as default)

DACxPHYReg eight auxiliary registers providing the real data written to the D/A converters

Note: Initial value (e.g. after power-up or soft-reset using the CardResetReg register) of all registers mentioned above

can be defined via the EEPROM contents. Because the initial values stored in the EEPROM can be modified by

the configuration program, the user can define the DIO ports status programmed immediately after turning on

the computer without delay until the program starts.

As can be seen from the description above, the factory default values of the registers allow you to set the analog

output signal in the full range of ±10 V and the initial signal value is je 0 V.

7.2 Analog outputs functionality

The PCA-8x88 cards contain eight 12-bit D/A converters (PCA-8288) or eight 16-bit D/A converters (PCA-8688), the

functionality and register mapping are identical for both type of cards.

All eight D/A converters operate with a single range of approximately ±10.2 V calibrated by linear conversion of ax+b from

DACxReg register data to the real range of ±10 V of analog outputs (DACxPHYReg). Calibration constants are stored in the

card's EEPROM at the factory.

Analog outputs therefore allow generating a signal in the range of ±10 V by writing to the corresponding register. For

applications requiring a different range, the card is additionally equipped with registers allowing limiting the output signal

to a smaller range; the data written to the register is compared with the minimum/maximum allowed value (DACxRegLo

and DACxRegHI registers)and if it is outside the allowed range, the written value is replaced by the limit value.

7.3 Registers DACxReg [WR]

The contents of these eight registers define the output voltage of the eight analog outputs.

The written data are valid in the range 0÷65535 (i.e. 16-bit data), where the values…

0 (i.e. 0H) represents the output voltage -10 V

32768 (i.e. 8000H) represents the output voltage 0 V

65535 (i.e. FFFF
H
) represents the output voltage +10 V (exactly 32767/32768 * 10 V)

The range of valid data can be limited using the DACxRegLo and DACxRegHi registers.

7.4 Registers DACxRegLo and DACxRegHi [WR]

The contents of these registers define the minimum and maximum allowed values ??written to the DACxReg registers.

When attempting to write a value smaller than DACxRegLo to the DACxReg register, the DACxRegLo value is written to

the register, and when attempting to write a value greater than DACxRegHi, the DACxRegHi value is written.

7.5 Registers DACxPHYReg [RD]

The content of these auxiliary registers provides the value actually written to the D/A converters (i.e. the value of

DACxReg after calibration conversion ax+b) and is useful for verifying the operation of calibration conversions.

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 14

8. Diagnostic registers (common to all card types)

8.1 Introduction

The following sections describe diagnostic registers (see the overview in Chapter 3).

List of registers:

CardResetReg set all registers of the card to a defined state (identical to state after power-up)

CardResetStatusReg status of running the procedure of setting all registers to the defined state

CardSerNrReg provides a unique card serial number

CardIDReg provides the status of the dual DIP switch (allows to differentiate up to 4 cards)

FPGATypeReg provides the FPGA firmware type value

FPGAVerReg provides the FPGA firmware version value

8.2 Register CardResetReg [WR]

Writing the value 5043384BH to this register causes an immediate reset (i.e. set to zero, unless otherwise stated in the

register description) all registers except all DOUTRegX registers and DIOCfgReg register.

Immediately after resetting, the preconfigured content is read from the on-board EEPROM and stored to the DOUTRegX

and DIOCfgReg registers; this procedure typically takes 1 ms and its progress is signaled by the CardResetStatusReg

register. All EEPROM values mentioned above can be modified by the free available configuration program.

Warning: During the ongoing register setup the program may only access the CardResetStatusReg register.

8.3 Register CardResetStatusReg [RD]

This register provides an access to flag indicating status of the procedure of setting all registers to the defined state

triggered by writing to CardResetReg register.

The register has only the lowest bit significant (all others are permanently zero); a status bit with a value of 1 signals the

ongoing setting of the card registers, a value of 0 then corresponds to the idle state.

8.4 Register CardSerNrReg [RD]

This register provides an access to the unique serial number of the card (32-bit integer format).

8.5 Register CardIDReg [RD]

This register provides an access to the status of the dual DIP switch (allows to differentiate up to 4 cards each other).

The register is mapped at two addresses, status is passed on the lowest two bits, the upper six bits (or 30 bits) are

permanently zeroed.

8.6 Register FPGATypeReg [RD]

This register provides an access to the FPGA firmware type value in the range 0 to 255.

The register is mapped at two addresses, status is passed on the lowest eight bits, the upper 24 bits are permanently

zeroed.

Note: The value of the standard card firmware type was mentioned in Chapter 1.

8.7 Register FPGAVerReg [RD]

This register provides an access to the FPGA firmware version value in the range 0 to 255.

The register is mapped at two addresses, status is passed on the lowest eight bits, the upper 24 bits are permanently

zeroed.

Note: The value of the standard card firmware version was mentioned in Chapter 1.

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 15

9. Registers in address spaces BAR1 a BAR2

9.1 Introduction

While the previous chapters described, with a few exceptions, the functional registers in the address space BAR0, the

following paragraphs will be dedicated to the registers in the address spaces BAR1 and BAR2.

Warning: The registers mapped in the BAR1 and BAR2 address spaces are subject to change depending on the firmware

version and, unlike the functional registers in BAR0, backward or forward compatibility is not guaranteed.

Therefore, the software that uses these registers must modify its functions not only by the card type, but also by

the content of the FPGATypeReg and FPGAVerReg registers.

9.2 Address space BAR1

The address space BAR1 provides an access to service registers (interface for FPGA firmware update, calibration

constants, configurable start-up settings of registers, …) and their description is out of focus of this manual.

Note: The full specification of BAR1 registers is subject to NDA and can be provided only in justified cases.

9.3 Address space BAR2

The address space BAR1 provides an access to registers intended for kernel part of the operating system driver (ISR

routine regisers, DMA registers, …) and their description is out of focus of this manual.

Note: The full specification of BAR1 registers is subject to NDA and can be provided only in justified cases.

PCA-8288, PCA-8688 Programmer's Guide

rev. 12.2015 page 16

	PCA-8288, PCA-8688
	Document history, Disclaimer, Contacts
	Table of Contents
	1. General information
	1.1 Introduction
	1.2 Standard height and low-profile card design
	1.3 Firmware version
	1.4 Where to get more information, technical support

	2. PCI Express controller
	2.1 Introduction
	2.2 PCI configuration register space
	2.3 Register's mapping

	3. Functional registers
	3.1 Registers overview
	3.2 Splitting the address space into blocks
	3.3 Block of registers with 8-bit data (+0000 ÷ 03FC)
	3.4 Block of DIO ports and edge detection circuits registers (+0400 ÷ 07FC)
	3.5 Block of analog outputs registers (+1400 ÷ 14FC)
	3.6 Block of SSI interfaces registers (+1100 ÷ 11FC)

	4. Registers intended for digital inputs/outputs ports
	4.1 Introduction
	4.2 Digital port functionality
	4.3 Registers DINReg0, … , DINReg2 [RD]
	4.4 Registers Register DINReg(2-0) [RD]
	4.5 Registers DOUTReg0, … , DOUTReg2 [WR]
	4.6 Register DOUTReg(2-0) [WR]
	4.7 Register DIOCfgReg [WR/RD]

	5. Registers intended for DIO signal edge detection circuits
	5.1 Introduction
	5.2 Registers DINREReg(x-x) and DINFEReg(x-x) [WR]
	5.3 Registers DINREStatusReg(x-x) and DINFEStatusReg(x-x) [RD]
	5.4 Registers DINREClrReg(x-x) and DINFEClrReg(x-x) [WR]
	5.5 Registers DINREIRQReg(x-x) and DINFEIRQReg(x-x) [WR]
	5.6 Simplified schematic diagram of edge detection circuits register structure

	6. Registers intended for interrupt handling circuits
	6.1 Introduction
	6.2 Interrupt handling circuit functionality
	6.3 Register INTEnReg [WR]
	6.4 Register IRQCfgReg [WR]
	6.5 Register IRQStatusReg [RD]
	6.6 Register IRQClrReg [WR]
	6.7 Register TimerReg [WR/RD]
	6.8 Simplified schematics diagram of interrupt handling circuits register structure

	7. Registers intended for analog outputs
	7.1 Introduction
	7.2 Analog outputs functionality
	7.3 Registers DACxReg [WR]
	7.4 Registers DACxRegLo and DACxRegHi [WR]
	7.5 Registers DACxPHYReg [RD]

	8. Diagnostic registers (common to all card types)
	8.1 Introduction
	8.2 Register CardResetReg [WR]
	8.3 Register CardResetStatusReg [RD]
	8.4 Register CardSerNrReg [RD]
	8.5 Register CardIDReg [RD]
	8.6 Register FPGATypeReg [RD]
	8.7 Register FPGAVerReg [RD]

	9. Registers in address spaces BAR1 a BAR2
	9.1 Introduction
	9.2 Address space BAR1
	9.3 Address space BAR2

